Пластический и энергетический обмен
Пластический и энергетический обмен
Пластический и энергетический обмен
Обмен веществ (метаболизм) – это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы
1. Пластический обмен (ассимиляция, анаболизм, биосинтез) – это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:
- При фотосинтезе из углекислого газа и воды синтезируется глюкоза.
2. Энергетический обмен (диссимиляция, катаболизм, дыхание) – это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности. Пример:
- В митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание)
Взаимосвязь пластического и энергетического обмена
- Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.
- Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.
АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).
- При энергетическом обмене все вещества распадаются, а АТФ – синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ, энергия запасается в АТФ.
- При пластическом обмене все вещества синтезируются, а АТФ – распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).
Еще можно почитать
Тесты и задания
Выберите один, наиболее правильный вариант. В процессе пластического обмена 1) более сложные углеводы синтезируются из менее сложных2) жиры превращаются в глицерин и жирные кислоты3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ4) происходит освобождение энергии и синтез АТФ
Выберите три варианта. Чем пластический обмен отличается от энергетического? 1) энергия запасается в молекулах АТФ2) запасенная в молекулах АТФ энергия расходуется3) органические вещества синтезируются4) происходит расщепление органических веществ5) конечные продукты обмена — углекислый газ и вода6) в результате реакций обмена образуются белки
Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы 1) белков2) воды3) АТФ4) неорганических веществ
Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена 1) пластический обмен поставляет органические вещества для энергетического2) энергетический обмен поставляет кислород для пластического3) пластический обмен поставляет минеральные вещества для энергетического4) пластический обмен поставляет молекулы АТФ для энергетического
Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит 1) расходование энергии, заключенной в молекулах АТФ2) запасание энергии в макроэргических связях молекул АТФ3) обеспечение клеток белками и липидами4) обеспечение клеток углеводами и нуклеиновыми кислотами
1. Установите соответствие между хаpaктеристикой обмена и его видом: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в правильном порядке. А) окисление органических веществБ) образование полимеров из мономеровВ) расщепление АТФГ) запасание энергии в клеткеД) репликация ДНКЕ) окислительное фосфорилирование
2. Установите соответствие между хаpaктеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам. А) происходит бескислородное расщепление глюкозыБ) происходит на рибосомах, в хлоропластахВ) конечные продукты обмена – углекислый газ и водаГ) органические вещества синтезируютсяД) используется энергия, заключенная в молекулах АТФЕ) освобождается энергия и запасается в молекулах АТФ
3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке. А) вещества окисляютсяБ) вещества синтезируютсяВ) энергия запасается в молекулах АТФГ) энергия расходуетсяД) в процессе участвуют рибосомыЕ) в процессе участвуют митохондрии
4. Установите соответствие между хаpaктеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам. А) репликация ДНК Б) биосинтез белка В) окисление органических веществ Г) трaнcкрипция Д) синтез АТФ Е) хемосинтез
5. Установите соответствие между хаpaктеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам. А) запасается энергия в молекулах АТФ Б) синтезируются биополимеры В) образуются углекислый газ и вода Г) происходит окислительное фосфорилирование Д) происходит репликация ДНК
Выберите три процесса, относящихся к энергетическому обмену веществ. 1) выделение кислорода в атмосферу 2) образование углекислого газа, воды, мочевины 3) окислительное фосфорилирование 4) синтез глюкозы 5) гликолиз 6) фотолиз воды
Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при 1) расщеплении органических веществ в органах пищеварения2) раздражении мышцы нервными импульсами3) окислении органических веществ в мышцах4) синтезе АТФ
Выберите один, наиболее правильный вариант. В результате какого процесса в клетке синтезируются липиды? 1) диссимиляции2) биологического окисления3) пластического обмена4) гликолиза
Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма 1) минеральными солями2) кислородом3) биополимерами4) энергией
Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в 1) легочных пузырьках при дыхании2) клетках тела в процессе пластического обмена3) процессе переваривания пищи в пищеварительном тpaкте4) клетках тела в процессе энергетического обмена
Выберите один, наиболее правильный вариант. Какие реакции обмена веществ в клетке сопровождаются затратами энергии? 1) подготовительного этапа энергетического обмена2) молочнокислого брожения3) окисления органических веществ4) пластического обмена
1. Установите соответствие между процессами и составляющими частями метаболизма: 1) анаболизм (ассимиляция), 2) катаболизм (диссимиляция). Запишите цифры 1 и 2 в правильном порядке. А) брожениеБ) гликолизВ) дыханиеГ) синтез белкаД) фотосинтезЕ) хемосинтез
2. Установите соответствие между хаpaктеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам. А) синтез органических веществ организма Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование В) освобожденная энергия запасается в АТФ Г) образуются вода и углекислый газ Д) требует энергетических затрат Е) происходит в хлоропластах и на рибосомах
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он хаpaктеризуется тем, что происходит 1) избирательное реагирование на внешние воздействия окружающей среды2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний3) передача из поколения в поколение признаков и свойств4) поглощение необходимых веществ и выделение продуктов жизнедеятельности5) поддержание относительно-постоянного физико-химического состава внутренней среды
1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны. 1) репликация2) дупликация3) трaнcляция4) трaнcлокация5) трaнcкрипция
2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны. 1) ассимиляция 2) диссимиляция 3) гликолиз 4) трaнcкрипция 5) трaнcляция
Читать еще: Можно ли есть мёд при панкреатите3. Перечисленные ниже термины, кроме двух, используются для хаpaктеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны. 1) расщепление 2) окисление 3) репликация 4) трaнcкрипция 5) хемосинтез
Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав 1) ДНК2) РНК3) АТФ4) белка
Все приведённые ниже признаки, кроме двух, можно использовать для хаpaктеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны. 1) идёт с поглощением энергии 2) завершается в митохондриях 3) завершается в рибосомах 4) сопровождается синтезом молекул АТФ 5) завершается образованием углекислого газа
Энергетический обмен
Обмен веществОбмен веществ (метаболизм) складывается из процессов расщепления и синтеза — диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.
Энергетический обменЭнергетический обмен (диссимиляция — от лат. dissimilis ‒ несходный) — обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.
Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).
Обсудим этапы энергетического обмена более подробно:
-
Подготовительный этап
Осуществляется в ферментами, в результате действия которых, сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.
Под действием ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, сложные углеводы — до простых сахаров.
Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.
Кислородный этап (аэробный)
Этот этап доступен только для аэробов — организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ — в сумме с двух ПВК выход составляет 36 молекул АТФ.
Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).
Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.
Трудно переоценить роль в клетке АТФ — универсального источника энергии. Молекула АТФ состоит из азотистого основания — аденина, углевода — рибозы и трех остатков фосфорной кислоты.
Между остатками фосфорной кислоты находятся макроэргические связи — ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда «∽».
АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:
- АТФ + H2O = АДФ + H3PO4 + E
- АДФ + H2O = АМФ + H3PO4 + E
- АМФ + H2O = аденин + рибоза + H3PO4 + E
АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трaнcляции), удвоению ДНК (репликации) и т.д.
В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.
©Беллевич Юрий Сергеевич
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Тема 1.4. Пластический и энергетический виды обмена
Раздел. Обмен веществ.
Задания для самостоятельного выполнения.
1.Подготовить сообщения и презентации на темы:
-«Роль вирусов в жизни человека»
— «Вирус гepпeса: невидимый враг»,
-«ВИЧ: вирус иммунодефицита человека»;
используя различные (печатные, электронные) источники информации.
Форма контроля самостоятельной работы:
— Защита презентации и сообщений
— Проверка рабочей тетради
Вопросы для самоконтроля по теме:
1. Как устроены вирусы.
2. Чем отличаются простые вирусы от сложных.
3. Каков принцип взаимодействия вируса с клеткой.
4. Как вирус проникает в клетку.
5. В чем проявляется действие вирусов на клетку.
6. Почему вирусы называют внеклеточной формой жизни.
Основные понятия и термины по теме:гомеостаз, метаболизм, пластический обмен (анаболизм, ассимиляция), фотосинтез,
автотрофы, хемотрофы, гетеротрофы, световая фаза, темновая фаза, метаболизм,диссимиляция, брожение, подготовительный этап, кислородный этап.
План изучения темы:
1. Метаболизм- основа существования живых организмов.
2. Пластический обмен: фотосинтез как автотрофный тип обмена веществ
3. Энергетический обмен
4. Этапы энергетического обмена
5. Митохондрии — «силовые станции» клетки
Краткое изложение теоретических вопросов:
1. В клетке непрерывно идут процессы биологического синтеза. С помощью ферментов из простых веществ образуются сложные: из аминокислот синтезируются белки, из моносахаридов- углеводы, из азотистых оснований и сахаров- нуклеотиды, а из них- нуклеиновые кислоты. Совокупность реакций биосинтеза называется пластическим обменом. Процесс, противоположный синтезу, является диссимиляция, или энергетический обмен. При расщеплении сложных веществ выделяется энергия, необходимая для биологического синтеза. Эти процессы взаимосвязаны друг с другом и обеспечивают постоянство внутренней среды организма- гомеостаз.
2. Пластический обмен ( анаболизм, ассимиляция) –этосовокупность реакций биологического синтеза. Все процессы метаболизма идут под контролем наследственного аппарата. Фотосинтез — особый тип обмена веществ, происходящий в клетках растений и ряда бактерий, содержащих хлорофилл и хлоропласты. Фотосинтез — процесс образования органических веществ в хлоропластах из углекислого газа и воды с использованием энергии солнечного света.
Суммарное уравнение фотосинтеза:
Хлорофилл — высокоактивное органическое вещество, зеленый пигмент, его роль в фотосинтезе: поглощение энергии солнечного света, которая используется для образования богатых энергией органических веществ из бедных энергией неорганических веществ — углекислого газа и воды. Органоиды клетки — хлоропласты со множеством выростов на внутренней мембране, увеличивающих ее поверхность. Встроенные в мембраны гран молекулы хлорофилла и ферментов, необходимые для поглощения и преобразования энергии света, осуществления реакций фотосинтеза.
Выделяют 2 стадии:
Световая стадия — образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта выделяется кислород. В общем, роль световых реакций фотосинтеза заключается в том, что в световую фазу синтезируются молекула АТФ и молекулы-переносчики протонов, то есть НАДФ Н2.Происходит в гранах хлоропластов.
Читать еще: УЗИ молочной железы или маммография: что лучше и информативнее, плюсы и минусы процедурТемновая фаза— с участием АТФ и НАДФН происходит восстановление CO2 до глюкозы (C6H12O6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции. Происходит в строме хлоропластов.
3. Энергетический обмен — совокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет освобождаемой энергии. Значение энергетического обмена — снабжение клетки энергией, которая необходима для жизнедеятельности . 4. Этапы энергетического обмена: подготовительный, бескислородный, кислородный. 1) Подготовительный — расщепление в лизосомах полисахаридов до моносахаридов, жиров до глицерина и жирных кислот, белков до аминокислот, нуклеиновых кислот до нуклеотидов. Рассеивание в виде тепла небольшого количества освобождаемой при этом энергии; 2) бескислородный(анаэробный гликолиз)или брожение — окисление веществ без участия кислорода до более простых, синтез за счет освобождаемой энергии двух молекул АТФ. Осуществление процесса на внешних мембранах митохондрий при участии ферментов; Процесс этот малоэффективный.
3) кислородный — окисление кислородом воздуха простых органических веществ до углекислого газа и воды, образование при этом 36 молекул АТФ. Окисление веществ при участии ферментов, расположенных на кристах митохондрий. Сходство энергетического обмена в клетках растений, животных, человека и грибов — доказательство их родства. 5. Митохондрии — «силовые станции» клетки, их отграничение от цитоплазмы двумя мембранами — внешней и внутренней. Увеличение поверхности внутренней мембраны за счет образования складок — крист, на которых расположены ферменты. Они ускоряют реакции окисления и синтеза молекул АТФ. Огромное значение митохондрий — причина большого количества их в клетках организмов почти всех царств.
Лабораторные работы/ Пpaктические занятия«не предусмотрено»
Пластический и энергетический обмен
Содержание
- Процесс обмена
- Обмен белков, жиров, углеводов
- Что мы узнали?
- Тест по теме
Процесс обмена
Взаимосвязь между средой и живым организмом осуществляется посредством метаболизма или обмена веществ. Для жизнедеятельности необходимо, чтобы внутрь организма с пищей и воздухом поступали органические и неорганические вещества – белки, жиры, углеводы, соли, кислород, витамины. Все эти вещества участвуют в ряде химических реакций. В таблице энергетического и пластического обмена описаны особенности двух процессов.
Обмен
Хаpaктеристика
Энергетический обмен (окисление, диссимиляция, катаболизм)
Направлен на расщепление органических веществ, поступивших из внешней среды или образованных в ходе пластического обмена, до простых соединений. В ходе расщепления выделяется энергия в виде молекулы АТФ (аденозинтрифосфата), участвующей в синтезе веществ
Пластический обмен (биосинтез, ассимиляция, анаболизм)
Заключается в синтезе специфических органических веществ с затратой энергии. Образованные вещества участвуют в процессах, происходящих в организме, являются резервным запасом энергии и строительным материалом
Рис. 1. Пластический и энергетический обмен.
Кратко общий процесс метаболизма можно разделить на три этапа:
- ферментативный(подготовительный) – при участии ферментов расщепляются поступившие из внешней среды белки, жиры, углеводы до более простых соединений;
- метаболический(основной) – расщеплённые вещества переносятся током крови к каждой клетке организма, где происходит образование энергии в виде молекул АТФ и синтез веществ (клеточный метаболизм) ;
- выделительный(заключительный) – продукты распада (углекислый газ, вода, аммиак) выводятся из организма посредством крови через выделительные органы и лёгкие.
Рис. 2. Процесс метаболизма.
Показателем здоровья является баланс между пластическим и энергетическим обменом. В период интенсивного роста (например, подростковый период) может наблюдаться преобладание анаболизма над катаболизмом.
Обмен белков, жиров, углеводов
Каждый день в организме происходят сложные процессы пластического и энергетического обмена. Чтобы организм смог использовать белки, жиры, углеводы, они должны пройти сложный путь. В таблице описаны процессы и функции веществ.
Метаболизм клетки. Энергетический обмен и фотосинтез. Реакции матричного синтеза.
Понятие метаболизма
Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.
Выделяют две составные части метаболизма — катаболизм и анаболизм.
Составные части метаболизма
Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.
Роль ФТФ в метаболизме
Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.
АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.
В этих связях запасена энергия, которая высвобождается при их разрыве: АТФ + H2O → АДФ + H3PO4 + Q1 АДФ + H2O → АМФ + H3PO4 + Q2 АМФ + H2O → аденин + рибоза + H3PO4 + Q3, где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин). Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.
Энергетический обмен
Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза. По отношению к свободному кислороду организмы делятся на три группы.
Классификация организмов по отношению к свободному кислороду
У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.
Этапы катаболизма
1. Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, полисахариды — до моносахаридов, нуклеиновые кислоты — до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тpaкте, у одноклеточных — в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений. 2. Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH3COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД + и запасаются в виде НАД·Н. Суммарная формула гликолиза имеет следующий вид: C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3Н4O3 + 2H2O + 2АТФ + 2НАД·Н. Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) переpaбатываются либо в этиловый спирт — спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода) CH3COCOOH → СО2 + СН3СОН СН3СОН + 2НАД·Н → С2Н5ОН + 2НАД + , либо в молочную кислоту — молочнокислое брожение (в клетках животных при недостатке кислорода) CH3COCOOH + 2НАД·Н → C3Н6O3 + 2НАД + . При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов. 3. Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода. Он состоит из трёх стадий: А) образование ацетилкоэнзима А; Б) окисление ацетилкоэнзима А в цикле Кребса; В) окислительное фосфорилирование в электронотрaнcпортной цепи.
Читать еще: Функции и норма соматотропного гормона гипофизаА. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА). Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО2, а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н2. В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н2 окисляются молекулярным кислородом О2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н2–2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ. Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотрaнcпортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода: О2 + е — → О2 — . В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О2 — ), а снаружи — положительно (за счёт Н + ), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H + силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду: 1/2О2 — +2H + → Н2О. Энергия ионов водорода H + , трaнcпортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ: АДФ + Ф → АТФ. Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием. Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания: C6H12O6 + 6O2 + 38H3PO4 + 38АДФ → 6CO2 + 44H2O + 38АТФ. Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания — ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы — 38 молекул АТФ.
Пластический обмен
Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).
Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул: органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы). Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потрeбляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы: неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Фотосинтез
Фотосинтез — синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:
Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны. Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы. Процесс фотосинтеза состоит из двух фаз: световой и темновой. 1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны. К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды. Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:
Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются. Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:
Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние. Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н + -резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н + ), а наружная — отрицательно (за счёт е — ). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ: АДФ + Ф → АТФ.
Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием. Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат): 2Н + + 4е – + НАДФ + → НАДФ·Н2. Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н2 участвуют в процессах темновой фазы. 2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО2 связывается с водородом из НАДФ·Н2 с образованием глюкозы. В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом. Сравнительная хаpaктеристика фотосинтеза и дыхания эукариот представлена в таблице.